

A parallel evaluation of five cost-effective indirect methods for assessing failure of passive immune transfer in neonatal calves

Fabien Corbiere¹, Amélie Mugnier¹, Katrien Pecceu², François Schelcher¹ ¹ INRAE, National Veterinary School of Toulouse, France ² MSD Animal Health, Beaucouzé, France

Introduction

• Failure of transfer of passive immunity (FTPI)

- Major risk factor for neonatal disease (diarrhea, respiratory disease) (Donovan et al, 1998)
- Influence longevity, future milk production, weight gain (Raboisson et al, 2016)
- Still remain a major issue in many herds, despite widely spread recommendations on colostrum management

Assessment of FTPI in neonatal calves

- Classically diagnosed when serum IgG concentration < 10.0 g/L (Buczinsky et al, 2018)
- Historical gold standard for serum IgG concentration : radial immunodiffusion (RID)
- Numerous indirect methods already evaluated
 - Serum Total Protein (STP) (direct or indirect), GGT... (Hernandez at al, 2016; Elsohaby et al, 2019)
 Brix refractometer
 - Evaluated in controlled environments

Study objectives

- A study to evaluate methods for assessing FTPI in calves
 - By veterinary practitioners
 - In field conditions
 - 5 indirect and cost effective methods evaluated in parallel

Material and Methods

• Animals and samples

- 245 2 to 6 day-old dairy and beef calves
- random sampling from 93 herds (1 to 6 per herd, median 3)
- Jugular venipuncuture in 2 vaccum tubes without anticoagulant
 - refrigerated for 24h00
 - centrigugated and serum frozen at -20°C
 - 1 aliquote used by vet practitioners (15 vets, 14 vet practices)
 - 1 aliquote send to ISAE 35 Laboratory

Material and Methods

• Serum analysis

What?		How ?	Who?
Serum IgG	RID-IgG g/L	Bov IgG Ring Test, IDBiotech, France	ISAE 35 Lab
Serum Total Protein	STP_OP (g/L)	Optical refractometer	
Serum Total Protein	% Brix	Digital Brix Refractometer (MA 882 Milwaukee)	
Serum Total Protein	STP_BA (g/L)		Not prostitioners
Serum Albumin	ALB (g/L)	VetTest biochemistry analyzers	vet. practitioners
GGT (EC 2.3.2.2)	GGT (UI/L)		
Serum Globulin	GLOB (g/L)	STP_BA - ALB	

Material and Methods

- Statistical analysis
 - Pearson correlations (r)
 - Evaluation of diagnostic characteristics for detecting FTPI (IgG < 10 g/L)
 - Sensitivity (Se) : conditional probability of correctly identifying animals with FTPI
 - Specificity (Sp) : conditional probability of correctly identifying animals without FTPI
 - ROC curves (pROC package R software, Robin et al, 2011)
 - Optimal cutoff points :
 - » Youden's J statistic
 - » Distance to the left-hand corner of ROC space (d²)
 - Area under the curve (AUC)

Prevalence of FTPI

- 76 calves (31.0%) with RID-IgG < 10 g/L : FTPI +
 - Post-hoc analysis : allows for a absolute precision of ±10% in Se and Sp estimates

• Pearson correlations r

- with RID-IgG : all 5 methods significantly correlated ($p < 10^{-16}$)
 - r ranging from 0.67 to 0.89
- Between indirect methods
 - STP_OP and %Brix: r = 0.78
 - STP_OP and STP_BA: r = 0.85
 - %Brix and STP_BA: r = 0.83

• Diagnostic performance for assessing FTPI RID-IgG < 10g/ L

	Ontimal	Sensitivity (95% Cl)	Specificity – (95% Cl)	Statistic ²		istic ²
Test ¹	cutoff			J	d ²	AUC
STP_OP, g/L	52.0	69.7 (58.1-79.7)	81.6 (75.0-87.2)	0.51	0.35	0.80
%Brix, %	8.4	86.5 (74.2-94.4)	83.8 (76.8-89.3)	0.70	0.21	0.88
STP_BA, g/L	56.0	90.8 (81.9-96.2)	79.2 (72.2-85.0)	0.70	0.22	0.92
GLOB, g/L	34.0	89.4 (80.3-95.3)	89.3 (83.6-93.5)	0.79	0.15	0.96
GGT, IU/L						
All ages	254.0	78.8 (65.3-88.9)	90.5 (84.6-94.7)	0.69	0.23	0.90
2 and 3 d old	393.0	87.5 (71.0-96.5)	87.8 (78.7-94.0)	0.75	0.17	0.92
4 to 6 d old	254.0	90.0 (68.3-98.8)	86.4 (75.7–93.6)	0.76	0.17	0.91

• Cut-point values with specificity greater than 95%

	Threshold ²			
Test ¹	Having FTPI	Not having FTPI		
STP_OP, g/L	43.0	68.0		
%Brix, %	7.6	9.6		
STP_BA, g/L	53.0	61.0		
GLOB, g/L	32.0	35.0		
GGT, IU/L				
All ages	201.0	583.0		
2 and 3 d old	238.0	728.0		
4 to 6 d old	164.0	373.0		

²For FTPI = RID-IgG<10g/L

 $PPV = \frac{Se * P}{Se * P + (1-Sp) * (1-P)}$

Discussion and conclusion

- Correlation of optical and digital Brix refractometers with RID-IgG
 - In accordance with other studies (Elsohaby et al., 2015, Hernandez et al., 2016, Cuttance et al., 2017; Elsohaby et al., 2019)

• Optimal cut-points

- Optical (52.0 g/L) and digital Brix refractometer (8.4%) : in accordance with other studies
- Correlation between optical and digital Brix refractometers
 - r = 0.78 lower than other estimates (0.91 to 0.97, Hernandez et al., 2016)
 - Optical refractometer may lead to reading errors or imprecision (+/- 2 to 3 g/L)

Discussion and conclusion

- All indirect methods performed equally well
 - No significant difference in diagnostic accuracy / misclassification rate between them
- Brix refractometer or STP optical refractometer
 - Fast and inexpensive
 - Should be promoted
 - At the individual level
 - At the herd level

Interested in more details ?

https://doi.org/10.3168/jdsc.2019-17931 Short Communication Production: Health, Behavior, and Well-being

A parallel evaluation of 5 indirect cost-effective methods for assessing failure of passive immunity transfer in neonatal calves

A. Mugnier,¹ K. Pecceu,² F. Schelcher,¹ and F. Corbiere¹*

Thank you for your attention.

Any question ?

fabien.corbiere@envt.fr

